模型:
zhayunduo/roberta-base-stocktwits-finetuned
该模型是在来自stocktwits的3200000条评论上对roberta-base模型进行微调的,用户标记了'Bullish'或'Bearish'标签。
在推断API上尝试一些个人投资者可能在投资论坛上说的话,例如尝试'red'和'green'。
Train loss | Validation loss | Validation accuracy | |
---|---|---|---|
epoch1 | 0.3495 | 0.2956 | 0.8679 |
epoch2 | 0.2717 | 0.2235 | 0.9021 |
epoch3 | 0.2360 | 0.1875 | 0.9210 |
epoch4 | 0.2106 | 0.1603 | 0.9343 |
from transformers import RobertaForSequenceClassification, RobertaTokenizer from transformers import pipeline import pandas as pd import emoji # the model was trained upon below preprocessing def process_text(texts): # remove URLs texts = re.sub(r'https?://\S+', "", texts) texts = re.sub(r'www.\S+', "", texts) # remove ' texts = texts.replace(''', "'") # remove symbol names texts = re.sub(r'(\#)(\S+)', r'hashtag_\2', texts) texts = re.sub(r'(\$)([A-Za-z]+)', r'cashtag_\2', texts) # remove usernames texts = re.sub(r'(\@)(\S+)', r'mention_\2', texts) # demojize texts = emoji.demojize(texts, delimiters=("", " ")) return texts.strip() tokenizer_loaded = RobertaTokenizer.from_pretrained('zhayunduo/roberta-base-stocktwits-finetuned') model_loaded = RobertaForSequenceClassification.from_pretrained('zhayunduo/roberta-base-stocktwits-finetuned') nlp = pipeline("text-classification", model=model_loaded, tokenizer=tokenizer_loaded) sentences = pd.Series(['just buy','just sell it', 'entity rocket to the sky!', 'go down','even though it is going up, I still think it will not keep this trend in the near future']) # sentences = list(sentences.apply(process_text)) # if input text contains https, @ or # or $ symbols, better apply preprocess to get a more accurate result sentences = list(sentences) results = nlp(sentences) print(results) # 2 labels, label 0 is bearish, label 1 is bullish